Soft Computing Based Evolutionary Multi-Label Classification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boosting-based Multi-label Classification

Multi-label classification is a machine learning task that assumes that a data instance may be assigned with multiple number of class labels at the same time. Modelling of this problem has become an important research topic recently. This paper revokes AdaBoostSeq multi-label classification algorithm and examines it in order to check its robustness properties. It can be stated that AdaBoostSeq ...

متن کامل

Classification of Ultra-high Resolution Images using Soft Computing

The main objective of this paper is to use a computational intelligence algorithm for preparing a mapping map that categorizes different patterns of identification of infected areas and changes in radiation pollution. In this paper, the use of the fuzzy inference system has been proposed to determine the degree of radiation contamination in the regions. The study uses ultra-high resolution spec...

متن کامل

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

A Threshold Based Multi-Label Classification

In classification problems, a pattern may belong to one or multiple categories. It is essential to deal multi-label classification accurately and efficiently. Threshold strategies can be used for multi-label classification. We propose four schemes to compute threshold for a threshold based multi-label classification. We validate our method using multi-label text data and multi-label image data....

متن کامل

Multi-Label Classification by Label Clustering based on Covariance

Multi-label classification is a supervised learning problem that predicts multiple labels simultaneously. One of the key challenges in such tasks is modelling the correlations between multiple labels. LaCova is a decision tree multi-label classifier, that interpolates between two baseline methods: Binary Relevance (BR), which assumes all labels independent; and Label Powerset (LP), which learns...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Intelligent Automation & Soft Computing

سال: 2020

ISSN: 1079-8587

DOI: 10.32604/iasc.2020.013086